![]() |
Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room
Min Woong Kim, Jaewon Jung, Se Jin Park, Young Sun Park, Jeong Hyeon Yi, Won Seok Yang, Jin Hyuck Kim, Bum-Joo Cho, Sang Ook Ha
Clin Exp Emerg Med. 2021;8(2):120-127. Published online 2021 Jun 30 DOI: https://doi.org/10.15441/ceem.20.091
|
Citations to this article as recorded by
MPFracNet: A Deep Learning Algorithm for Metacarpophalangeal Fracture Detection with Varied Difficulties
Geng Qin, Ping Luo, Kaiyuan Li, Yufeng Sun, Shiwei Wang, Xiaoting Li, Shuang Liu, Linyan Xue
Computers, Materials & Continua.2023; 75(1): 999. CrossRef Development and validation of a deep learning-based model to distinguish acetabular fractures on pelvic anteroposterior radiographs
Pengyu Ye, Sihe Li, Zhongzheng Wang, Siyu Tian, Yi Luo, Zhanyong Wu, Yan Zhuang, Yingze Zhang, Marcin Grzegorzek, Zhiyong Hou
Frontiers in Physiology.2023;[Epub] CrossRef Automatic Segmentation for Favourable Delineation of Ten Wrist Bones on Wrist Radiographs Using Convolutional Neural Network
Bo-kyeong Kang, Yelin Han, Jaehoon Oh, Jongwoo Lim, Jongbin Ryu, Myeong Seong Yoon, Juncheol Lee, Soorack Ryu
Journal of Personalized Medicine.2022; 12(5): 776. CrossRef Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis
Xiang Zhang, Yi Yang, Yi-Wei Shen, Ke-Rui Zhang, Ze-kun Jiang, Li-Tai Ma, Chen Ding, Bei-Yu Wang, Yang Meng, Hao Liu
European Radiology.2022; 32(10): 7196. CrossRef
|