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This review explores the concept of “blood failure” in traumatic injury, which arises from the in-
terplay of oxygen debt, the endotheliopathy of trauma (EoT), and acute traumatic coagulopathy 
(ATC). Traumatic hemorrhage leads to the accumulation of oxygen debt, which can further exac-
erbate hemorrhage by triggering a cascade of events when severe. Such events include EoT, 
characterized by endothelial glycocalyx damage, and ATC, involving platelet dysfunction, fibrino-
gen depletion, and dysregulated fibrinolysis. To manage blood failure effectively, a multifaceted 
approach is crucial. Damage control resuscitation strategies such as use of permissive hypoten-
sion, early hemorrhage control, and aggressive transfusion of blood products including whole 
blood aim to minimize oxygen debt and promote its repayment while addressing endothelial 
damage and coagulation. Transfusions of red blood cells, plasma, and platelets, as well as the 
use of tranexamic acid, play key roles in hemostasis and countering ATC. Whole blood, whether 
fresh or cold-stored, is emerging as a promising option to address multiple needs in traumatic 
hemorrhage. This review underscores the intricate relationships between oxygen debt, EoT, and 
ATC and highlights the importance of comprehensive, integrated strategies in the management 
of traumatic hemorrhage to prevent blood failure. A multidisciplinary approach is essential to 
address these interconnected factors effectively and to improve patient outcomes. 
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Review
 Article

What is already known
Traumatic injury is a significant global health concern, leading to a substantial 
number of deaths. Hemorrhage is a common cause of early trauma deaths and 
is exacerbated by acute traumatic coagulopathy. The endotheliopathy of trau-
ma involves damage to the endothelial glycocalyx layer and contributes to co-
agulation and inflammation issues in trauma patients.

What is new in the current study
This review explores the interconnections between oxygen debt, endotheliopa-
thy of trauma, and acute traumatic coagulopathy, collectively referred to as 
“blood failure,” in the context of traumatic hemorrhage. It highlights the need 
for a comprehensive approach to managing traumatic hemorrhage using dam-
age control resuscitation strategies, which include early and aggressive trans-
fusion of blood products such as whole blood to address both oxygen debt and 
coagulation issues. The study emphasizes the importance of considering these 
factors together to improve outcomes in trauma patients.
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INTRODUCTION 

According to the Global Burden of Disease Study 2019 [1], trau-
matic injury claimed the lives of 2.4 million people around the 
world and constituted 7.8% of all deaths. Although head injury 
and hemorrhage are the two most common causes of death from 
traumatic injury [2], death due to head injury is reported to de-
crease with the development of the trauma care system and dam-
age control interventions, whereas death due to hemorrhage does 
not decrease significantly [3]. In addition, although hemorrhage is 
the most common cause of early trauma death, up to 50% of pa-
tients with traumatic hemorrhage can be potentially saved [3,4]. 

Traumatic hemorrhage is exacerbated by acute traumatic co-
agulopathy (ATC). In the past, traumatic coagulopathy was at-
tributed to hemodilution from crystalloid fluid resuscitation, 
along with progressive hypothermia and acidosis, and was con-
sidered an unavoidable consequence of resuscitation. However, 
Brohi et al. [5] reported that clinically relevant ATC may not be 
related to fluid administration. They found that patients with evi-
dence of ATC on arrival to the emergency department had signifi-
cantly higher mortality that was positively correlated with the 
severity of the injury and not the volume of intravenous fluid ad-
ministered. Another study by Floccard et al. [6] and Brohi et al. [7] 
reported that coagulopathy existed at the site of injury in about 
half the trauma patients managed by mobile intensive care units, 
and its severity was related to the degrees of injury and hypoper-
fusion. Thus, if trauma patients experience more severe injuries 
with significant hemorrhage, hemostasis becomes more chal-
lenging. To overcome ATC in severely injured patients, current 
practices in trauma resuscitation include rapid control of bleed-
ing and maintenance of blood’s hemostatic ability, termed “dam-
age control resuscitation” or “hemostatic resuscitation.” These 
methods include the use of blood products with very limited use 
of crystalloid therapy to reduce mortality [8–12]. 

Timely hemostatic resuscitation using a balanced transfusion 
ratio of red blood cells (RBCs), plasma, and platelets or whole 
blood coupled with the use of antifibrinolytic agents such as 
tranexamic acid has not only improved outcomes, but also de-
creased inflammatory complications (acute respiratory distress 
syndrome), number of operations, and the overall amount of used 
blood products [10]. Thus, hemostatic resuscitation in patients 
with traumatic hemorrhage appears to give additional protection 
due in part to its effects on the endothelium, which is injured by 
hemorrhagic shock [13]. The term “endotheliopathy of trauma 
(EoT)” was first used by Holcomb and Pati [14] and describes the 
early damage of the endothelial glycocalyx layer (EGL) after inju-

ry. Breakdown of the EGL increases vascular permeability result-
ing in capillary leakage and exposure of endothelial cells to plate-
lets and white blood cells. These promote thromboinflammation, 
edema, and organ-barrier dysfunction [15]. 

ACT and EoT appear to be intricately connected and correlated 
based on the degree of hypoperfusion. Therefore, this review aims 
to explore the interconnectedness between these entities. 

TRAUMATIC HEMORRHAGE AND OXYGEN 
DEBT 

The relationship between oxygen delivery and oxygen consump-
tion is biphasic (Fig. 1). In a normal resting state, metabolic de-
mand and consumption of oxygen (VO2) are independent of oxy-
gen delivery (DO2). This steady state of consumption is achieved 
by tissues extracting larger amounts of oxygen, resulting in he-
moglobin leaving organs with lower levels of oxygen saturation. 
However, when DO2 decreases below a critical point (critical DO2), 
the levels of oxygen extraction cannot support aerobic metabo-
lism. At this point, major organ systems enter a state of anaerobic 
metabolism, and an oxygen deficit occurs. Increase of this level 
(degree of VO2 below aerobic threshold) over time is the oxygen 
debt, which can be viewed as whole-body ischemia. Although it 
is measured precisely in a laboratory setting by indirect calorime-
try, oxygen debt can also be reflected clinically (and less precisely) 
by sequential measures of lactate. Traumatic hemorrhage results 
in a decrease in DO2 through decreases in cardiac output and 
blood oxygen content. Additional factors such as vasoconstriction 
add to a further reduction in DO2 to tissues [16,17]. The resulting 
oxygen debt quantitatively predicts survival and the development 

Fig. 1. Biphasic relationship between oxygen delivery (DO2) and con-
sumption of oxygen (VO2). An increase in lactate occurs at the point of 
critical DO2 and is also biphasic. The cumulative oxygen deficit over 
time is termed the oxygen debt.
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of multiple organ failure after hemorrhage [18–20]. The magni-
tude of oxygen debt is also linked to levels of mitochondrial dys-
function, oxidative reperfusion injury, and inflammation, leading 
to necrosis and apoptosis, which contribute to organ dysfunction 
or failure and even death. The mechanisms of oxygen debt and 
the resulting cascade of injury also have implications for endo-
thelial damage and coagulation. 

Rapid resuscitation from traumatic hemorrhagic shock is criti-
cal to not only halt the further accumulation of oxygen debt, but 
also for its repayment [16]. Failure to repay oxygen debt in a 
timely manner results in increased reperfusion and inflammatory 
injury, organ dysfunction, and possible death [21]. However, the 
ability to ensure repayment is challenging given the biphasic re-
lationship between oxygen delivery and consumption. Stabilizing 
patients just above critical DO2 will halt anaerobiosis and assist 
lactate clearance but may not produce the above-baseline levels 
of VO2 that will result in partial or full repayment. However, early 
and rapid clearance of lactate appears to be associated with im-
proved chances of oxygen debt repayment.  

BLOOD AS AN ORGAN: DEFINITION OF 
BLOOD FAILURE 

A body organ is a structural unit consisting of variable cells that 
work together in coordinated functions. Blood in the circulatory 
system is enveloped by the endothelium; the vascular endotheli-
um, as a conduit for blood, coordinates the physiological trans-
port of oxygen, carbon dioxide, nutrients, and waste products and 
connecting physically distant organs. In addition, the endotheli-
um maintains the fluidity of blood by preventing the formation of 
blood clots through a thromboresistant surface and anticoagu-
lant mediators that function in the endothelium under normal 
circumstances. Thus, the blood and the endothelium interact inti-
mately, and the blood-endothelial system can be viewed as an 
individual organ. In this context, it may be considered the largest 
integrated functional organ system in the body. As such, the 
blood-endothelial system is a major target of damage from trau-
ma, hemorrhage, hypoperfusion, and reperfusion injury. Traumatic 
hemorrhage is capable of inducing endothelial dysfunction and 
damage, which is believed to begin a cascade of ATC [22,23]. 

It has been suggested that oxygen debt is the main driver be-
hind ATC [5], and reperfusion injury caused by resuscitation may 
damage fibrinogen and fibrin [24], weakening clots weaker, exac-
erbating hemorrhage, and worsening oxygen debt. Thus, oxygen 
debt, endotheliopathy, and ATC are interconnected and are con-
sidered collectively as “blood failure” (Fig. 2). Blood failure can be 

defined as an emergent state of blood that arises during the ac-
cumulation of a critical level of oxygen debt. 

When oxygen debt occurs, cellular energetic processes change 
from aerobic to anaerobic metabolism. Normally, oxygen acts as 
a terminal electron acceptor in the mitochondrial electron trans-
port chain (ETC). Specifically, glucose and fatty acids are metabo-
lized in the cytoplasm and mitochondria, respectively, generating 
high-energy electron carriers, such as NADH and FADH2. These 
electron carriers donate their electrons to the ETC, where they 
pass through a series of protein complexes, including complexes I, 
II, and III. Finally, at complex IV, molecular oxygen (O2) serves as 
the final electron acceptor. At this stage, oxygen accepts the 
electrons donated by the electron carriers and, together with pro-
tons (H+) from the mitochondrial matrix, forms water (H2O). This 
electron transfer reaction allows the flow of electrons to contin-
ue within the ETC, producing the proton gradient that drives the 
synthesis of adenosine triphosphate (ATP) through ATP synthase. 
The use of oxygen as the terminal electron acceptor in complex 
IV is crucial for efficient production of ATP, providing the cell with 
a continuous and robust energy supply to support essential func-
tions. However, under conditions of critically low oxygen delivery, 
the ETC may leak electrons, leading to the production of reactive 
oxygen species (ROS). These ROS, including superoxide anion and 
hydrogen peroxide, can damage cellular components, such as lip-
ids, proteins, and DNA. Electron leaks occur when electrons pre-
maturely escape the ETC and react with oxygen, bypassing com-
plex IV. This uncoupling of electron flow from ATP synthesis dis-
rupts energy production, exacerbates cellular stress, and contrib-
utes to mitochondrial dysfunction. In addition, lactate accumu-
lates as a byproduct when the rate of glycolysis exceeds the ca-
pacity of oxidative metabolism to utilize pyruvate. This process 
helps sustain energy production in cells but leads to lactate accu-
mulation, which can decrease pH and exacerbate metabolic aci-
dosis. Moreover, neurovascular compensation through sympa-
thetic activation and catecholamine release activates Na+/K+-AT-
Pase, increasing lactate production [25] and constricting blood 
vessels to further reduce blood flow to organs and increase tissue 
hypoxia. Changes in blood redox potential, accumulation of lactic 
acid, and an increase of catecholamine resulting from the accu-
mulation of oxygen debt affect endothelial cells and blood com-
ponents and cause EoT and ATC, which represent blood failure 
[26–28]. 

ENDOTHELIOPATHY OF TRAUMA 

The endothelium is one of the largest parts of the human body, 
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occupying a blood-endothelial interface measuring approximate-
ly 300 to 1,000 m2 [29]. The endothelium is formed by a single 
cell layer and lines all blood and lymphatic vessels. The physiolog-
ical function of the endothelium includes control of vascular 
tone, inflammation, angiogenesis, and regulation of coagulation 
and fibrinolysis [14,30,31]. The endothelial glycocalyx lines the 
inner surface of the vascular endothelium and consists of mem-
brane-bound proteoglycans, glycoproteins, and soluble plasma or 
endothelium-derived molecules [32]. When traumatic hemor-
rhage-induced oxygen debt occurs, it results in hypoxia and cate-
cholamine release. In addition, release of inflammatory mediators 
and enzymes such as matrix metalloproteinases and heparanases 
from injured tissue and leukocytes induce shedding of the glyco-
calyx [22,33,34]. This shedding from the endothelial surface re-
sults in loss of barrier function, leading to capillary leaks; expo-
sure of heparan sulfate from endothelial cells, which contributes 

to coagulopathy through autoheparinization; and release of 
damage-associated molecular patterns, contributing to systemic 
inflammation [35–38]. Glycocalyx shedding also exposes the en-
dothelial cell surface and initiates nonspecific adhesion of plate-
lets and leukocytes and generation of thrombin [39,40]. In addi-
tion to glycocalyx shedding, ROS and circulating proinflammatory 
cytokines such as TNF-α and interleukin 6 (IL-6) induce endothe-
lial cells to propagate innate immune responses [41,42]. This 
shedding of the endothelial glycocalyx and endothelial cell acti-
vation result in capillary leaks, nonspecific intravascular coagula-
tion, and inflammation throughout the systemic endothelium of 
the body. In other words, this is not a localized effect at the site 
of a traumatic injury. 

In clinical studies, shedding of the endothelial glycocalyx is as-
sociated with poor outcomes, and increasing plasma levels of the 
biomarkers syndecan-1, thrombomodulin, hyaluronan, and hepa-

Blood Failure

Trauma 
(hemorrhagic shock)

Oxygen debt

Endotheliopathy of
trauma

Acute traumatic  
coagulopathy

• Mitochondrial dysfunction and ATP depletion 
• Reactive oxygen species generation
• Lactate accumulation and acidosis
•  Sympathetic activation and catecholamine release

• Shedding of the endothelial glycocalyx and capillary leaks
• Autoheparinization
• Release of DAMPs and systemic inflammation
• Nonspecific intravascular coagulation

• Impaired platelet aggregation
• Fibrinogen depletion
• Dysregulated fibrinolysis

Fig. 2. Schematic representation of blood failure and proposed mechanisms. ATP, adenosine triphosphate; DAMP, damage-associated molecular pat-
terns.
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ran sulfate are correlated with the severity of traumatic injury 
[43–46]. 

ACUTE TRAUMATIC COAGULOPATHY 

Coagulopathy after traumatic hemorrhage has long been ac-
knowledged and considered a co-phenomenon and inevitable 
consequence of large-volume crystalloid resuscitation, hypother-
mia, and metabolic acidosis. However, endogenous coagulopathy 
caused by the severity of the traumatic injury itself and the de-
gree of traumatic shock has been recognized and named ATC 
[5,47]. ATC is a complex and multifactorial condition that begins 
in the early stages of traumatic hemorrhage and can rapidly 
progress as level of oxygen debt increases. Several mechanisms of 
ATC have been proposed, with additional proposals under investi-
gation. Despite this, it is agreed that ATC involves disturbances in 
platelet function, fibrinogen depletion, and dysregulated fibrino-
lysis, leading to impaired blood clotting, excessive bleeding, and 
potential accumulation of greater oxygen debt. 

Platelet dysfunction is a critical aspect of ATC. Trauma-induced 
shock and tissue injury can activate platelets, causing them to 
aggregate and release procoagulant substances. However, plate-
lets may also become dysfunctional, leading to decreased clot 
formation and impaired hemostasis. In a swine traumatic hemor-
rhage model, it was demonstrated that clot strength is reduced 
as oxygen debt increases despite unchanged platelet count [48]. 
In addition, inhibition of platelet function eliminated increases in 
the firmness of clots in a rat polytrauma model [49]. These find-
ings suggest the importance of platelet function in clot strength, 
and platelet dysfunction results in weak clots. It has also been re-
ported that platelets from trauma patients show impaired aggre-
gation to ex vivo agonist stimulation independent of platelet 
count, and this is more pronounced in nonsurvivors [50,51]. Im-
paired aggregation of platelets was shown to develop very quick-
ly in a porcine model of traumatic hemorrhage and can occur 
within 15 minutes of injury [52]. The precise mechanism is not 
known but involves the endothelial release of tissue factor, plate-
let-activating factor, and von Willebrand factor [53,54], which 
activates platelets beyond their primary role of hemostasis. This 
phenomenon is referred to as “platelet exhaustion” [51,55,56]. 
Circulating soluble factors, which remain undefined, are thought 
to mediate platelet exhaustion [57], and a platelet transfusion 
may not necessarily reverse platelet dysfunction [58,59]. In addi-
tion to impaired platelet aggregation in patients with traumatic 
hemorrhage, impairments in the adhesive function of platelets to 
collagen and contractile force have been reported [60,61]. Plate-

lets with an impaired aggregation response also contribute to tis-
sue plasminogen activator (tPA)-mediated fibrinolysis due to im-
paired platelet plasminogen activator inhibitor-1 (PAI-1) [62].  

Poor survival has been reported in trauma patients with dimin-
ished levels of fibrinogen [63]. In a swine model of trauma and 
hemorrhage, fibrinogen was significantly reduced with increasing 
oxygen debt [48]. Fibrinogen is converted to fibrin by thrombin 
and forms a hemostatic plug, together with platelets. It is the 
terminal substrate for the coagulation cascade and must be 
maintained at a minimum level for effective hemostasis. The 
mechanisms for diminished level of fibrinogen in traumatic hem-
orrhage include impairment of fibrinogen synthesis due to hypo-
thermia, accelerated degradation by acidosis and reperfusion in-
jury, and consumption in clot formation with additional blood 
loss and hemodilution, further decreasing fibrinogen level [64–
66]. 

Dysregulated fibrinolysis may also be involved in ATC, but the 
exact mechanism in patients with traumatic hemorrhage remains 
unclear. Exposure of tissue factors by injury and endothelial dis-
ruption activates the extrinsic coagulation pathway and gener-
ates thrombin, leading to fibrin and clot formation. Initially, the 
clotting process is localized at the site of injury, but escape of 
thrombin from the injury site activates the systemic coagulation 
process [67]. Normally, thrombin escaped from the injury site is 
inhibited by circulating antithrombin and thrombomodulin ex-
pressed on endothelial cells, and the thrombin-thrombomodulin 
complex activates protein C to maintain tissue perfusion by in-
hibiting thrombosis. However, persistent tissue hypoperfusion in-
duces endothelial cell damage, which increases the levels of solu-
ble thrombomodulin and the thrombin-thrombomodulin complex 
to excessively activate protein C and interfere with blood coagu-
lation [67]. It has been reported that soluble thrombomodulin 
and activated protein C were increased in trauma patients and 
are associated with poor clinical outcomes [68]. Although acti-
vated protein C is involved in control of fibrinolysis by cleavage of 
factors Va and VIIIa, as well as binding of PAI-1, and is suggested 
as a major driver of ATC, the level of activated protein C in trau-
ma patients cannot cleave factor Va efficiently [69]. Rather, hy-
perfibrinolysis observed in ATC might be associated with the 
overwhelming systemic release of tissue plasminogen activator 
from Weibel-Palade bodies stored in endothelial cells and loss of 
alpha2 antiplasmin and PAI-1 [70–75]. Another concept of dys-
regulated fibrinolysis is termed “fibrinolysis shutdown” and has 
been reported as the most common phenotype of dysregulated 
fibrinolysis in severe trauma patients [76]. Patients who exhibited 
fibrinolysis shutdown experienced prior hyperfibrinolysis, includ-
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ing elevation of D-dimers and depletion of fibrinolytic inhibitors 
[77]. The mechanism of fibrinolysis shutdown is not fully identi-
fied. A surge in PAI-1, shedding of S100A10 plasminogen receptor 
protein from the surface of endothelial cells that normally drive 
the hyperfibrinolysis process, and increased level of thrombin-ac-
tivatable fibrinolysis inhibitor in plasma have been suggested 
[78–80]. The extent of these processes and level of fibrinolysis are 
greatest in patients with rapid and massive hemorrhage and re-
flected in higher oxygen debt [62,76]. 

CONSIDERATIONS IN THE MANAGEMENT 
OF BLOOD FAILURE 

As indicated above, severe traumatic hemorrhage can result in 
blood failure, which is collectively composed of oxygen debt, EoT, 
and ATC. Increasing levels of EoT and ATC will complicate hemo-
stasis, leading to accumulation of greater oxygen debt. To prevent 
or reverse blood failure in patients with traumatic hemorrhage, 
immediate control of hemorrhage and repayment of oxygen debt 
must be combined with simultaneous treatment of both endo-
thelial injury and coagulopathy. Damage control resuscitation 
(DCR) or hemostatic resuscitation is a strategic approach in pa-
tients with severe injuries and hemorrhagic shock. DCR includes 
immediate control of ongoing hemorrhage, early balanced trans-
fusion of blood products with other hemostatic agents, and per-
missive hypotension. The combination and simultaneous execu-
tion of these strategies reduce the degree of blood failure. 

Transfusion of packed RBCs (pRBCs) increases the oxygen-car-
rying capacity, cardiac output, and thus DO2. In addition, RBCs 
influence hemostasis as evidenced by increased accumulation of 
platelets at a high hematocrit level and the association of in-
creased RBC count with predisposition to thrombosis [81,82]. The 
proposed mechanisms include increased platelet adhesion and 
aggregation through the release of adenosine diphosphate and 
thromboxane A2, the release of membrane-derived procoagulant 
microvesicles, and aggregation of RBCs with platelets via adhe-
sive molecules [83]. Thus, early use of pRBCs can help to decrease 
the oxygen debt and provide additional hemostatic effects. There 
has been concern that pRBCs stored a long period might have al-
tered oxygen affinity and delivery, rheological changes, and adhe-
siveness to the endothelium, which might affect outcomes [84–
86]. However, a recent multicenter, randomized blinded trial did 
not show any benefit of fresh RBCs in critically ill patients, al-
though most of the patients were not victims of trauma [87,88]. 

Most guidelines recommend the transfusion of a high ratio of 
plasma to RBCs, with the majority recommending a 1:1 ratio. 

Transfusion of plasma increases cardiac output through intravas-
cular volume expansion and supplements coagulation factors to 
increase hemostatic ability. Additionally, plasma may provide en-
dothelial protection, assisting in recovery of the endothelial gly-
cocalyx, abrogating endothelial hyperpermeability and inflamma-
tion, and restoring syndecan-1 expression in the lungs [89–92]. 
Plasma also promotes homeostasis in thrombin generation [93]. 
Considering that EoT and ATC develop rapidly after injury, prehos-
pital plasma transfusion may be helpful. Based on this, several 
militaries have invested in the development and deployment of 
lyophilized plasma that can be stored, carried, and reconstituted 
in field environments. However, controversial reports exist on the 
benefits of prehospital administration of plasma alone on survival 
and may reflect the need for additional components (pRBCs and 
platelets) during longer transport times [94,95]. While minor, 
transfusion of plasma has risks including infectious disease trans-
mission and triggering of transfusion-related acute lung injury 
[96,97]. 

Early platelet transfusion in conjunction with pRBCs (1:1 ratio) 
is associated with improved outcomes in traumatic hemorrhage 
[98]. Platelets contribute to hemostasis by increasing thrombin 
formation, clot firmness, and resistance to clot lysis [99]. Howev-
er, platelets have a limited shelf-life, compromising immediate 
availability. Platelets are traditionally stored at room temperature 
to maintain function, but storage is usually limited to 5 days due 
to growth of bacterial contaminants. However, evidence suggests 
that storage of platelets at 4 °C may extend the effective lifespan 
for up to 14 days and may decrease the risk of infectious compli-
cations [100–102]. Although cold-stored platelets remain in cir-
culation for a shorter period, they showed better hemostatic 
function and greater capacity to inhibit endothelial permeability 
than platelets stored at room temperature [101,102]. 

Fresh and cold-stored whole blood is a growing alternative to 
the 1:1:1 ratio of pRBCs, plasma, and platelets. The use of whole 
blood can not only restore oxygen-carrying capacity, but also 
mitigate endotheliopathy and coagulopathy simultaneously and 
simplify the logistics of massive transfusion protocols. The use of 
whole blood has been limited to military medicine, but its use has 
been increasing recently in civilian trauma including several pre-
hospital ground and air ambulance systems [103–106]. Although 
no large randomized control trial currently exists, the use of 
whole blood has been reported as feasible and associated with 
improved survival in several studies [107–111]. 

Transfusion of cryoprecipitate, a rich source of fibrinogen, fac-
tor VIII, and von Willebrand factor, and fibrinogen concentrate 
can be used for supplementing fibrinogen and enhancing hemo-
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stasis. A minimal level of fibrinogen is required to maintain effec-
tive hemostasis. It has been reported that the use of fibrinogen 
concentrates or cryoprecipitate in trauma patients resulted in 
better survival [112–117]. However, there are controversies sur-
rounding the effect of fibrinogen supplements on traumatic 
hemorrhage. A meta-analysis that included four randomized con-
trolled trials [118] found that fibrinogen concentrate had no sig-
nificant benefit on mortality, although the quality of evidence 
was graded low to moderate. 

Current practice standards for DCR recommend early adminis-
tration of tranexamic acid (TXA) for facilitating hemostasis. The 
CRASH-2 (Clinical Randomisation of an Antifibrinolytic in Signifi-
cant Haemorrhage 2) trial [119] demonstrated that administra-
tion of TXA within 3 hours of injury significantly reduced mortali-
ty, especially in hypotensive patients. Although a recent study 
[120] comparing TXA and placebo within 2 hours of injury in pre-
hospital patients with hypotension (systolic blood pressure, <90 
mmHg) and tachycardia (heart rate, >110 beats/min) did not re-
sult in significantly lower mortality, a subgroup analysis of pa-
tients with severe shock (systolic blood pressure, <70 mmHg) or 
TXA administered within 1 hour of injury showed a survival bene-
fit. Thus, TXA may be beneficial only in patients with severe shock 
and should be used shortly after the trauma event. The potential 
risk of TXA treatment is the development of venous thromboem-
bolism (VTE), as demonstrated in retrospective studies of trauma 
patients [121,122]. Administration of TXA may increase the inci-
dence of fibrinolysis shutdown, and patients in the CRASH-2 trial 
who received TXA at 3 hours after injury had an increased risk of 
death [66,123]. In addition, a small, single-center, randomized 
trial [124] compared placebo with 2 or 4 g TXA administration 
within 2 hours of trauma in patients requiring a transfusion of at 
least 1 unit of RBC and showed a dose-dependent increase of 
thromboembolic events. Furthermore, a large study administering 
TXA continuously for 24 hours in patients with acute gastrointes-
tinal bleeding [125] showed a higher incidence of VTE. Thus, the 
use of TXA should be guided by coagulation status in patients. 
Conventional coagulation tests, such as prothrombin time, acti-
vated partial thromboplastin time, fibrinogen level, and platelet 
count, are unable to identify the status of hyperfibrinolysis or hy-
pofibrinolysis. However, viscoelastic hemostatic assays can pro-
vide more comprehensive information about the coagulation sta-
tus of patients rapidly and in real-time [22,126]. 

Permissive hypotension before and during definite bleeding 
control is advocated to limit ongoing hemorrhage by reducing 
hydrostatic pressure while maintaining a level of critical vital or-
gan perfusion [127–132]. During permissive hypotension, provid-

ers control resuscitation so that systolic blood pressure does not 
exceed a targeted pressure (e.g., 100–110 mmHg). This strategy 
may reduce the degree of noncompressible torso hemorrhage un-
til definitive surgical hemostasis can be achieved. However, pro-
longed definite bleeding control can produce permissive hypoten-
sion to result in additional accumulation of oxygen debt and 
must be balanced. Such strategies are even more complicated in 
patients in shock who also have traumatic brain injuries, in whom 
the recommended minimal systolic blood pressure is 110 to 120 
mmHg [133,134]. The balance between permissive hypotension 
and avoiding the accumulation of additional oxygen debt is not 
trivial. The use of blood product resuscitation will help maximize 
the potential benefit of permissive hypotension. 

CONCLUSION 

Blood and the vascular endothelium can be considered a single 
organ system that can fail because of oxygen debt incurred 
during traumatic hemorrhage and its repair. The severity of this 
failure is exhibited through the development of EoT and ATC. This 
interplay among oxygen debt, EoT, and ATC drives the concept of 
"blood failure," where the disruption of normal physiological ho-
meostasis results in a cascade of negative effects. 

Efforts in managing blood failure involve a multifaceted ap-
proach. DCR strategies, such as permissive hypotension, early 
control of hemorrhage, and balanced transfusion of blood prod-
ucts, aim to limit the accumulation of oxygen debt and maximize 
its repayment, alleviate endothelial damage, and restore coagula-
tion. Transfusion of pRBCs, plasma, and platelets and the use of 
TXA are essential components of DCR, contributing to hemostasis 
and mitigating the effects of ATC. Additionally, the use of whole 
blood, whether fresh or cold-stored, is emerging as a promising 
approach to address the holistic needs of trauma patients. The 
intricate relationships between these factors highlight the urgent 
need for comprehensive, integrated strategies that consider the 
interconnected nature of traumatic hemorrhage, blood failure, 
and its associated complications. This review sheds light on syn-
ergistic relationships and emphasizes the importance of multidis-
ciplinary approaches to effectively manage traumatic hemorrhage 
and to mitigate its detrimental consequences. 
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